Total Synthesis of Rhodomycin Aglycones

By ANDREW S. KENDE* and YUH-GENG TSAY

(Department of Chemistry, University of Rochester, Rochester, New York 14627)

Summary The tetracyclic ketone (VIa), readily available from 1,4,5-trimethoxyanthraquinone, has been converted by C-9 vinylation and subsequent transformations into the four rhodomycin aglycones (I)—(IV).

RHODOMYCINONES (I)—(V) are the principal aglycones of the aminoglycoside antibiotics of the rhodomycin group,¹ which include mycetins A, B, and C.² We now report the first total synthesis of the racemic rhodomycinones (I)—(IV) by methods which could prove useful for the construction of similar aglycones in the citromycin³ and isorhodomycin⁴ series.

(I)	$R^1 = R^2 = R^3 = H$	10-deoxy-y-rhodomycinone
(II)	$R^1 = R^2 = H, R^3 = OH$	γ−rhodomycinone
(III)	$R^1 = H, R^2 = R^3 = OH$	∝– rhodomycinone
av	$R^1 = R^3 = OH, R^2 = H$	β-rhodomycinone
(Y)	$R^1 = OH, R^2 = H, R^3 = CO_2 Me$	e-rhodomycinone

Conversion of 1,4,5-trimethoxyanthraquinone into the crystalline tetracyclic ketone (VIa) in 25% yield over three steps has recently been reported.⁵ Demethylation of the ketone (VIa) (AlCl₃ in CH₂Cl₂, room temp.) produced the ketone (VIb) (90%, m.p. 263—266 °C). Although the reaction of this ketone with EtMgBr led mainly to enolization, reaction with CH₂=CHMgBr was normal, giving the vinyl carbinol (VIIb) (50%), which on di-imide† reduction gave 96% of the red, crystalline (\pm)-10-deoxy- γ -rhodomycinone (I), m.p. 203—204 °C.‡

Similarly, the ketone (VIa) could be converted by way of the vinyl carbinol (VIIa) (m.p. 205—206 °C) into the alcohol (VIII), m.p. 209—210 °C, in 73% overall yield. Aluminium chloride effected both demethylation and dehydration to give 72% of the olefin (IX), m.p. 180—183 °C, δ (CDCl₃) 6·73 (s, 10-H). Stereospecific *trans*-hydroxylation⁶ converted (IX) in 70% yield into (\pm)- γ -rhodomycinone (II), m.p. 254—257 °C (decomp.), spectroscopically identical to the natural material.⁷

Attempts to introduce oxygen at C-7 by homolytic bromination⁵ of (II) led to oxidation at C-10. Therefore the olefin (IX) was transformed to the crystalline epoxide (X), m.p. 209—210 °C in 76% yield. Acetic acid at 85 °C cleaved (X) stereospecifically to give predominantly the 10-acetate (XIa) of (\pm) -epi- γ -rhodomycinone, $R_{\rm f}$ 0.38,

SCHEME. Reagents: i, CH₂=CHMgBr, tetrahydrofuran, -78 °C; ii, KO₂CN₂CO₂K, HOAc, pyridine, 65 °C; iii, AlCl₃, CH₂Cl₂, 25 °C; iv, o-sulphobenzoic anhydride, see ref. 6, 30 % H₂O₂, acetone, 25 °C; v, m-chloroperbenzoic acid, CH₂Cl₂, 25 °C; vi, HOAc, 85 °C; vii, HOAc-NaOAc, 85 °C; viii, Br₂, CCl₄, hv, then AgOCOCF₃, Me₃SO; ix, 0.5N NaOH, EtOH, room temp.

† Hydrogenation of carbinols (VII) over Pd or Pt catalysts gave complex mixtures unsuitable for further transformations.

[‡] Mass spectra, t.l.c. properties, and n.m.r. spectra of synthetic (I) were identical to those reported by Brockmann and Niemeyer, see ref. 1.

 ν (CHCl₃) 1716 cm⁻¹.§ In contrast, a mixture of acetic acid and 2—4% sodium acetate at 85 °C gave both (XIa) and (\pm)- γ -rhodomycinone-10-acetate (XIb), R_{f} 0.31, ν (CHCl₃) 1738 cm⁻¹, in the ratio 1:9.§ The acetate (XIb) was brominated, and the very labile C-7 bromination product was treated with silver trifluoroacetate and then hydrolysed to afford a 1:1 mixture of C-7 alcohols (50% yield), readily separable by preparative t.l.c. into (\pm) - α -rhodomycinone-10-acetate (XIIa), δ (CDCl₃) 5·28 (7-H, $\nu_{\frac{1}{2}}$ 16 Hz), and (\pm) - β -rhodo-mycinone-10-acetate (XIIb), δ (CDCl₃) 5·28 (7-H, $\nu_{\frac{1}{2}}$ 7 Hz). Hydrolysis of (XIIa) and (XIIb) yielded, respectively,

 (\pm) - α -rhodomycinone (III) and (\pm) - β -rhodomycinone (IV), having mass spectrometric and chromatographic properties indistinguishable from the values recorded by Brockmann and Niemeyer.7

We thank the National Institutes of Health, U.S.P.H.S., the Hoffmann-La Roche Company, and the Pennwalt Corporation for financial support, and Miss S. Barclay and Mr. J. Schneider for technical assistance.

(Received, 13th December 1976; Com. 1354.)

§ These R_f values refer to 0.5 mm silica gel 60 F-254 t.l.c. plates (Brinkmann), employing 3% MeOH in CH₂Cl₂. The ester C=O shifts may reflect intramolecular H-bonding in the *cis* acetate (XIa), *cf*. H. B. Henbest and B. J. Lovell, *J. Chem. Soc.*, 1957, 1965.

¹ H. Brockmann, Fortschr. Chem. org. Naturstoffe, 1963, 21, 121; H. Brockmann and J. Niemeyer, Chem. Ber., 1967, 100, 3578. ² G. Z. Yakubov, N. O. Blinov, L. N. Sergeeva, O. I. Artamonova, and A. S. Khokhlov, Antibiotiki, 1965, 10, 771. ³ H. Brockmann and J. Niemeyer, Chem. Ber., 1968, 101, 1341.

- ⁴ H. Brockmann, J. Niemeyer, and W. Rode, *Chem. Ber.*, 1965, 98, 3145.
 ⁵ A. S. Kende, Y. Tsay, and J. E. Mills, *J. Amer. Chem. Soc.*, 1976, 98, 1967.
 ⁶ J. M. Bachhawat and N. K. Mathur, *Tetrahedron Letters*, 1971, 691.

⁷ J. Niemeyer, Dissertation, 'Isolierung und Strukturermittlung von Zwölf Neuen Anthracyclinone,' Univ. Göttingen, 1966. We thank Professor Brockmann for providing us with this dissertation and copies of unpublished spectra.